Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38425033

RESUMO

The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.


Assuntos
Mycobacteriaceae , Mycobacterium tuberculosis , Tuberculose , Humanos , Pandemias , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Sideróforos/metabolismo , Ferro/metabolismo , Dissulfetos/metabolismo , Proteínas de Bactérias/metabolismo
2.
PLoS Pathog ; 20(3): e1012069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452145

RESUMO

Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinação , Loci Gênicos , Citocinas/genética , Antígenos de Bactérias
3.
Nat Commun ; 14(1): 5840, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730757

RESUMO

Diabetes mellitus increases risk for tuberculosis disease and adverse outcomes. Most people with both conditions have type 2 diabetes, but it is unknown if type 1 and type 2 diabetes have identical effects on tuberculosis susceptibility. Here we show that male mice receiving a high-fat diet and streptozotocin to model type 2 diabetes, have higher mortality, more lung pathology, and higher bacterial burden following Mycobacterium tuberculosis infection compared to mice treated with streptozotocin or high-fat diet alone. Type 2 diabetes model mice have elevated plasma glycerol, which is a preferred carbon source for M. tuberculosis. Infection studies with glycerol kinase mutant M. tuberculosis reveal that glycerol utilization contributes to the susceptibility of the type 2 diabetes mice. Hyperglycemia impairs protective immunity against M. tuberculosis in both forms of diabetes, but our data show that elevated glycerol contributes to an additional adverse effect uniquely relevant to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Tuberculose , Humanos , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Glicerol , Estreptozocina
4.
PLoS Pathog ; 19(9): e1011650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747938

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.


Assuntos
Ferro , Mycobacterium tuberculosis , Humanos , Ferro/metabolismo , Sideróforos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ligantes , Proteínas de Bactérias/metabolismo , Heme/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(28): e2301394120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399390

RESUMO

Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Variação de Fase , Genômica , Adaptação Fisiológica/genética , Virulência/genética , Filogenia , Genoma Bacteriano
6.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37405387

RESUMO

Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.


Assuntos
Mycobacterium tuberculosis , Camundongos , Animais , Mycobacterium tuberculosis/genética , Camundongos Endogâmicos DBA , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Mutagênese , Mamíferos/genética
7.
mSphere ; 8(4): e0038922, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37318217

RESUMO

Mycobacterium tuberculosis is exposed to a variety of stresses during a chronic infection, as the immune system simultaneously produces bactericidal compounds and starves the pathogen of essential nutrients. The intramembrane protease, Rip1, plays an important role in the adaptation to these stresses, at least partially by the cleavage of membrane-bound transcriptional regulators. Although Rip1 is known to be critical for surviving copper intoxication and nitric oxide exposure, these stresses do not fully account for the regulatory protein's essentiality during infection. In this work, we demonstrate that Rip1 is also necessary for growth in low-iron and low-zinc conditions, similar to those imposed by the immune system. Using a newly generated library of sigma factor mutants, we show that the known regulatory target of Rip1, SigL, shares this defect. Transcriptional profiling under iron-limiting conditions supported the coordinated activity of Rip1 and SigL and demonstrated that the loss of these proteins produces an exaggerated iron starvation response. These observations demonstrate that Rip1 coordinates several aspects of metal homeostasis and suggest that a Rip1- and SigL-dependent pathway is necessary to thrive in the iron-deficient environments encountered during infection. IMPORTANCE Metal homeostasis represents a critical point of interaction between the mammalian immune system and potential pathogens. While the host attempts to intoxicate microbes with high concentrations of copper or starve the invader of iron and zinc, successful pathogens have acquired mechanisms to overcome these defenses. Our work identifies a regulatory pathway consisting of the Rip1 intramembrane protease and the sigma factor, SigL, that is essential for the important human pathogen, Mycobacterium tuberculosis, to grow in low-iron or low-zinc conditions such as those encountered during infection. In conjunction with Rip1's known role in resisting copper toxicity, our work implicates this protein as a critical integration point that coordinates the multiple metal homeostatic systems required for this pathogen to survive in host tissue.


Assuntos
Mycobacterium tuberculosis , Peptídeo Hidrolases , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Homeostase , Ferro/metabolismo , Mamíferos , Metais , Mycobacterium tuberculosis/metabolismo , Peptídeo Hidrolases/metabolismo , Fator sigma/metabolismo , Zinco/metabolismo
8.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200108

RESUMO

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/genética , Patrimônio Genético
9.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945430

RESUMO

Genetic differences among mammalian hosts and Mycobacterium tuberculosis ( Mtb ) strains determine diverse tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host- pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the BXD family of mouse strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb -resistant C57BL/6J (B6 or B ) and Mtb -susceptible DBA/2J (D2 or D ) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters for "endophenotypes", each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted QTL mapping of these bacterial fitness endophenotypes and identified 140 h ost- p athogen quantitative trait loci ( hp QTL). We identified a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes; Rv0127 ( mak ), Rv0359 ( rip2 ), Rv0955 ( perM ), and Rv3849 ( espR ). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.

10.
J Immunol ; 210(10): 1531-1542, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37000471

RESUMO

We used a mouse model to study how Mycobacterium tuberculosis subverts host defenses to persist in macrophages despite immune pressure. CD4 T cells can recognize macrophages infected with a single bacillus in vitro. Under identical conditions, CD8 T cells inefficiently recognize infected macrophages and fail to restrict M. tuberculosis growth, although they can inhibit M. tuberculosis growth during high-burden intracellular infection. We show that high intracellular M. tuberculosis numbers cause macrophage death, leading other macrophages to scavenge cellular debris and cross-present the TB10.4 Ag to CD8 T cells. Presentation by infected macrophages requires M. tuberculosis to have a functional ESX-1 type VII secretion system. These data indicate that phagosomal membrane damage and cell death promote MHC class I presentation of the immunodominant Ag TB10.4 by macrophages. Although this mode of Ag presentation stimulates cytokine production that we presume would be host beneficial, killing of uninfected cells could worsen immunopathology. We suggest that shifting the focus of CD8 T cell recognition to uninfected macrophages would limit the interaction of CD8 T cells with infected macrophages and impair CD8 T cell-mediated resolution of tuberculosis.


Assuntos
Bacillus , Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Camundongos , Animais , Sistemas de Secreção Tipo VII/metabolismo , Antígenos de Bactérias , Bacillus/metabolismo , Linfócitos T CD8-Positivos , Macrófagos
11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769182

RESUMO

Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Proteínas de Transporte/metabolismo , Vacina BCG
12.
Infect Immun ; 91(2): e0051022, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36629440

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterium that exclusively resides in human hosts and remains a dominant cause of morbidity and mortality among infectious diseases worldwide. Host protection against Mtb infection is dependent on the function of immunity-related GTPase clade M (IRGM) proteins. Polymorphisms in human IRGM associate with altered susceptibility to mycobacterial disease, and human IRGM promotes the delivery of Mtb into degradative autolysosomes. Among the three murine IRGM orthologs, Irgm1 has been singled out as essential for host protection during Mtb infections in cultured macrophages and in vivo. However, whether the paralogous murine Irgm genes, Irgm2 and Irgm3, play roles in host defense against Mtb or exhibit functional relationships with Irgm1 during Mtb infection remains undetermined. Here, we report that Irgm1-/- mice are indeed acutely susceptible to aerosol infection with Mtb, yet the additional deletion of the paralogous Irgm3 gene restores protective immunity to Mtb infections in Irgm1-deficient animals. Mice lacking all three Irgm genes (panIrgm-/-) are characterized by shifted lung cytokine profiles at 5 and 24 weeks postinfection, but control disease until the very late stages of the infection, when panIrgm-/- mice display increased mortality compared to wild-type mice. Collectively, our data demonstrate that disruptions in the balance between Irgm isoforms is more detrimental to the Mtb-infected host than total loss of Irgm-mediated host defense, a concept that also needs to be considered in the context of human Mtb susceptibility linked to IRGM polymorphisms.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Tuberculose/genética , Mycobacterium tuberculosis/metabolismo , Macrófagos/metabolismo
13.
J Bacteriol ; 204(6): e0054021, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35543537

RESUMO

Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. IMPORTANCE Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.


Assuntos
Proteínas de Bactérias , Peptidoglicano , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380903

RESUMO

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Assuntos
Antituberculosos , Carbono , Parede Celular , Interações Medicamentosas , Interação Gene-Ambiente , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Carbono/metabolismo , Parede Celular/ultraestrutura , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura
15.
Elife ; 112022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112666

RESUMO

The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen's ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen's genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Predisposição Genética para Doença , Variação Genética , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Mycobacterium tuberculosis/patogenicidade , Fenótipo
16.
J Immunol ; 208(6): 1352-1361, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217585

RESUMO

The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Proteínas Proto-Oncogênicas c-rel/genética , Tuberculose , Adulto , Vacina BCG , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Criança , Proteínas de Homeodomínio , Humanos , Interleucina-10/genética , Interleucina-12/genética , Tuberculose/genética
17.
Elife ; 102021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726598

RESUMO

The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Respiração Celular , Interferon gama/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Animais , Linhagem Celular , Humanos , Camundongos
18.
PLoS One ; 16(10): e0257911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597304

RESUMO

Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.


Assuntos
Antibacterianos , Descoberta de Drogas , Genes Bacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Genes Bacterianos/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo
19.
mSystems ; 6(5): e0087621, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34665010

RESUMO

TnSeq is a widely used methodology for determining gene essentiality, conditional fitness, and genetic interactions in bacteria. The Himar1 transposon is restricted to insertions at TA dinucleotides, but otherwise, few site-specific biases have been identified. As a result, most analytical approaches assume that insertions are expected to be randomly distributed among TA sites in nonessential regions. However, through analysis of Himar1 transposon libraries in Mycobacterium tuberculosis, we demonstrate that there are site-specific biases that affect the frequency of insertion of the Himar1 transposon at different TA sites. We use machine learning and statistical models to characterize patterns in the nucleotides surrounding TA sites that correlate with high or low insertion counts. We then develop a quantitative model based on these patterns that can be used to predict the expected counts at each TA site based on nucleotide context, which can explain up to half of the variance in insertion counts. We show that these insertion preferences exist in Himar1 TnSeq data sets from other mycobacterial and nonmycobacterial species. We present an improved method for identification of essential genes, called TTN-Fitness, that can better distinguish true biological fitness effects by comparing observed counts to expected counts based on our site-specific model of insertion preferences. Compared to previous essentiality methods, TTN-Fitness can make finer distinctions among genes whose disruption causes a fitness defect (or advantage), separating them out from the large pool of nonessentials, and is able to classify many smaller genes (with few TA sites) that were previously characterized as uncertain. IMPORTANCE When using the Himar1 transposon to create transposon insertion mutant libraries, it is known that the transposon is restricted to insertions at TA dinucleotide sites throughout the genome, and the absence of insertions is used to infer which genes are essential (or conditionally essential) in a bacterial organism. It is widely assumed that insertions in nonessential regions are otherwise random, and this assumption is used as the basis of several methods for statistical analysis of TnSeq data. In this paper, we show that the nucleotide sequence surrounding TA sites influences the magnitude of insertions, and these Himar1 insertion preferences (sequence biases) can partially explain why some sites have higher counts than others. We use this predictive model to make improved estimates of the fitness effects of genes, which help make finer distinctions of the phenotype and biological consequences of disruption of nonessential genes.

20.
J Clin Med ; 10(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34362035

RESUMO

An estimated 15-20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after "lipid-resuscitation", and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein-Jensen or 7H9 media, which is consistent with Mtb's known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...